Possible Calibration Scheme for the 21cm CRT

Dave McGinnis Fermilab

Calibration Goals

- The goal of a calibration system is to measure variations from the ideal:
 - Amplifier gain
 - Antenna response
- It is most likely that the telescope will have to be calibrate continuously with an update rate on the order of 10 minutes

FFT Telescope Gain

 The output of an FFT telescope with N channels is N real numbers

$$\langle P \rangle_{k} = \sum_{n} P_{z_{n}} + \int_{-1}^{1} S(x) \left| \sum_{n} g_{n}(x) e^{-j2\pi n \frac{d}{\lambda} x} e^{j2\pi \frac{n}{N} k} \right|^{2} dx$$

- However, since the feed gain is a complex number, there are 2N unknowns.
 - You would need two independent sky measurements of different well known sources to be measured in fairly rapid intervals
- It will also be difficult to tell the difference between small sky signal variations and gain variations,
 - i.e. calibrating out the signal you want to measure

Another Calibration Concept

- Since the feeds are equally spaced,
 - The visibility between adjacent pairs is redundant
 - By comparing adjacent visibilities, this redundancy could be used to match the gain of the feeds
 - Since the visibility is a complex number, and if there are enough known calibration sources, there are enough equations to solve for all of the gains
- To calculate the adjacent visibilities, N calculations would have to be done which is small compared to N x ln(N) of the FFT
 - However, the N gain corrections would have to be stored which would add a substantial burden on data storage if the calibration is done often.

Adjacent Visibility Calibration Concept

Problems with the Adjacent Visibility Calibration Concept

• The effective temperature of a point source is given as:

$$I_{point} = \frac{kT_{eff}}{\lambda^2} = \frac{S_{point}}{\Omega} \approx S_{point} \frac{W}{\lambda}$$

• The ratio between Boltzman's constant (k) and 1 Jansky (1J=10⁻²⁶W/m²/Hz) is:

$$\frac{k}{I} = 1360 \frac{m^2}{Kelvin}$$

 For a cylinder width of 12.5 meters at 750Mhz, the strength of a point source would have to be greater than 2700 Jansky's to compete with an average sky temperature of 10K

Relative Adjacent Visibility Calibration Concept

Visibility between channel (n) and channel (n+k)

$$\langle p_n, p_{n+k}^* \rangle = \int d\varphi \int_{-1}^1 s(x, \varphi) g_n(x, \varphi) g_{n+k}(x, \varphi)^* e^{j2\pi k \frac{d}{\lambda} x} dx$$

 Compare visibility at (n,n+k) and (m,m+k) and adjust gain corrections to make them equal.

$$\chi_k = \sum_{n} \sum_{m>n} |\langle p_n, p_{n+k}^* \rangle - \langle p_m, p_{m+k}^* \rangle|^2$$

• If the antenna is calibrated χ_k is zero for all k

Relative Adjacent Visibility Calibration Concept

- Because the average sky temperature is large(~10K), few averages are needed to beat down the thermal noise.
- First order k=1 does not have enough equations to determine all the coefficients
- Need to use at least use k=1 and k=2.
- Also the absolute gain and phase shift is not constrained.
 - Constrain the average gain magnitude = 1
 - Constrain the average gain phase = 0.

Simulation using k=1 Only

Simulation for k=1 & 2

Simulation for k=1,2, & 3

Conclusions and Questions

- Because the FFT telescope loses or obscures phase information, we will probably need a real time calibration system instead of relying on offline calibration only.
- How often do we need calibrate?
- To what level do we need to calibrate?
- By comparing relative adjacent visibilities, the variations in gain between channel can be reduced.
- Comparing relative adjacent visibilities does not calibrate out your signal as point sources will.